MCCB's / Fuses program
Fuses program C 1
LV HRC fuse switch-disconnectors C 6
Accessories C 15
Dimensional drawings C 17
LV HRC strip type fuse switch-disconnectors C 23
Accessories C 30
Dimensional drawings C 34
Record Plus C 53

Fuses gG 500V, 690V and gG/LP 400V

Advantageous features:
Low power dissipation
Top- and middle indicator construction
Insulated gripping lugs
High breaking capacity
Marking: MEEI; VDE

Function

gG characteristic: general purpose (eg. wire protection)
Standard conformity
EN 60 269-1
EN 60 269-2
HD 630.2.1
IEC 60269-1
IEC 60269-2
DIN 0636/201
VDE 0636/201

Technical data: gG 500V, 690V and gG/LP 400V

Size range

	gG 500 V	gG 690 V	gG/LP 400 V
000 (00C)	$2-100 \mathrm{~A}$	-	$2-100 \mathrm{~A}$
00	$2-160 \mathrm{~A}$	$2-100 \mathrm{~A}$	$2-160 \mathrm{~A}$
0	$6-160 \mathrm{~A}$	$6-160 \mathrm{~A}$	-
1 C	$6-160 \mathrm{~A}$	$6-160 \mathrm{~A}$	-
1	$25-250 \mathrm{~A}$	$25-250 \mathrm{~A}$	$25-250 \mathrm{~A}$
2 C	$25-250 \mathrm{~A}$	$25-250 \mathrm{~A}$	-
2	$63-400 \mathrm{~A}$	$63-400 \mathrm{~A}$	$63-400 \mathrm{~A}$
$3 C$	$63-400 \mathrm{~A}$	$63-400 \mathrm{~A}$	-
3	$160-630 \mathrm{~A}$	$160-400 \mathrm{~A}$	$160-630 \mathrm{~A}$
4^{*}	$400-1250 \mathrm{~A}$	-	-
$4 a^{* *}$	$400-1250 \mathrm{~A}$	-	-
NHL1	$25-250 \mathrm{~A}$	-	-
NHL2	$63-400 \mathrm{~A}$	-	-

* Breaking capacity 80kA

Rated voltage 400V~
** Breaking capacit 50kA

Rated voltage:	$500 \mathrm{~V} \sim, 690 \sim$
Rated frequency:	50 Hz
Selectivity:	$1: 1,6$
Curent breaking capacity:	120 kA (gG 500V)
	100 kA (gG 690V, LP 400V)

Type marking

Characteristic: gG or LP
Size: according to DIN
Type sign

NH 3 gG MK 160A

 MK: insulated gripp

Additionally

The printing on the fuses are black (gG) or blue (LP). NHL type fuses listed among the size-range come with screw connection instead of blades (see at typerange). NHL type fuses are always made with middle indicators.

Fuses: aM 500 V a 690 V

Advantageous features:

Low power dissipation
Top- and middle indicator construction
Insulated gripping lugs
High breaking capacity
Marking: VDE

Function:

aM characteristic: partial-range breaking capacity, motor circuits protection (formerly back-up protection)

Standard conformity:
EN 60 269-1
EN 60 269-2
HD 630.2.1
IEC 60269-1
IEC 60269-2
DIN 0636/201
VDE 0636/201

Technical data: aM 500 V a 690 V

Size range

	aM 500V	aM 690V
$000(00 \mathrm{C})$	$6-100 \mathrm{~A}$	$6-63 \mathrm{~A}$
00	$6-160 \mathrm{~A}$	$6-100 \mathrm{~A}$
0	$6-160 \mathrm{~A}$	$6-160 \mathrm{~A}$
1 C	$6-160 \mathrm{~A}$	$6-160 \mathrm{~A}$
1	$25-250 \mathrm{~A}$	$25-250 \mathrm{~A}$
2 C	$25-250 \mathrm{~A}$	$25-250 \mathrm{~A}$
2	$63-400 \mathrm{~A}$	$63-400 \mathrm{~A}$
$3 C$	$63-400 \mathrm{~A}$	$63-400 \mathrm{~A}$
3	$160-400 \mathrm{~A}$	$160-400 \mathrm{~A}$

Rated voltage:
500V~, 690V~

Rated frequency:

50 Hz
Selectivity:
1:1,6
Current breaking capacity: 100kA
Constructions with: Top indicator
Middle indicator
Middle indicator and insulated gripping lugs (plastic Cover-plate)

Type marking

NH 3 aM MK 160A
Construction: no character: top indicator
M : middle indicator
MK: insulated gripp

Additionally

The printing on the fuses are green. The partial interval protection operates in case of high overcurrent, when the thermal circuit breakers are not able to melt (e.g. because of being burned).

Characteristics of NH fuses; gG 500V and 690V

Time-current characteristics

Cut-off current characteristics

Power dissipation

Characteristics of NH fuses; gG/LP 400V

Time-current characteristics

Cut-off current characteristics

Characteristics of NH fuses; aM 500V and 690V

Time-current characteristics

Cut-off current characteristics

The " 9 " series LV HRC fuse switch-disconnectors of the DIN sizes $00-4$ a are suitable for surface mounting on mounting plates and for direct mounting on busbars. The different sizes are available as 1-pole, 2-pole, 3-pole and 4 -pole versions.

- Surface mounting
- Busbar mounting
- 1 - pole, 2 - pole, 3 - pole and 4 - pole
- Retrofittable cable connections
- Fuse monitor
- Position indication
- DIN rail fixing parts

LV HRC fuse switch-disconnectors, size 1

Example: Surface mounting with accessories, 1-pole

Basic construction

1 Base of disconnector U-LTL1-1
2 Protective cover, top BO-LTL1-1
3 Protective cover, bottom BU-LTL1-1
4 Swing-in device D-LTL1-1/9

Connection accessories

5ab) Screw terminal F-LTL1-M10
6 Clamp-type terminal S1
7 V terminal clamp P1
8 Double V-terminal clamp P12

Covering accessories

(Protection against contact)
9 Handle protection, top and bottom GOU-LTL1-1

Accessories for mechanical fuse monitoring

Position indicator, "ON"

10ab) Mech. fuse monitor K-LTL1-1/H
11ab) Position indicator,
"ON" (electrical interlocking) eV-LTL123-1
LV HRC fuse switch-disconnectors with quasi-instantaneous circuit
12 Quasi-instantaneous circuit LTL1-1/9/Q

LV HRC fuse switch-disconnectors, size 00

Example: Surface mounting with accessories, 3 - pole

Basic construction

1 Base of disconnector U-LTLOO-3
2 Protective cover, top BO - LTLOO - 3
3 Protective cover, bottom BU - LTLOO-3
4 Swing-in device D - LTLOO - 3/9

Connection accessories

5 Screw terminal F - M8x16
6 Clamp - type terminal S00
7 V - terminal clamp P0070
8 Box terminal F50

Covering accessories

(Protection against contact)
9 Handle protection, top/bottom GOU - LTLOO - 3

Fixing accessories

10 DIN rail fixing parts Z-LTLOO-3

Accessories for interlocking, mechanical fuse monitoring and "ON" position indication

11 Protective cover interlock VHG - LTL00123-3
12 Mech. fuse monitor K - LTLOO - 3/H
13 Position indicator, "ON" (electrical interlocking) eV

- LTLOO - 3

Accessories: Swing - in device with electronic fuse monitor 14 Swing-in device ESOO - D - LTLOO

Sizes 00-4a / 160A-1600A

1 - pole / surface mounting AC 690V

Product definition

LV HRC fuse switch-disconnectors in accordance with EN 60947-3 with swing-in device for accomodating one LV HRC fuse - link in accordance with DIN 43620, sizes 00/160 A to 4a/1600 A.

Applications

Switchgear for system, cable and motor protection in alternating and direct current systems. The disconnectors are frequently used in battery - powered direct current systems such as UPS systems.

Operational principle

Using amanually - operated swing - in device, the LV HRC fuse - link is swung in (making operation) and pulled out (breaking operation).

Product construction

Swing - in devicemade ofhalogen - free self - extinguishing plastics. Split latch - on contact cover. Standard disconnectors are equipped with screw terminals, but can be retrofitted with direct - connection terminals.

Size	Rated operational current (A)	Std.P	Type
LTL...			
Size 00	160	1	$00-1 / 9$
Size 1	250	1	$1-1 / 9$
Size 3	630	1	$3-1 / 9$
Size 4a	1250	1	$4 A-1 X / 1250 / 8$
Size 4a	1600	1	$4 A-1 X / 1600 / 8$

Sizes 00-3/160A-630A

2 - pole / surface mounting AC 690V

Product definition

LV HRC fuse switch-disconnectors in accordance with EN 60947-3 with swing - in device for accomodating 2 LV HRC fuse-links in accordance with DIN 43620, sizes 00/160A to 3/630A. Applications
Switchgear for system, cable and motor protection in direct current systems. The disconnectors are frequently used in battery - powered direct current systems such as UPS systems.
Operational principle
Usingmanually - operated swing - in devices, the LV HRC fuse - links are swung in (making operation) and pulled out (breaking operation).

Product construction

Swing-in devicemade of halogen-free self-extinguishing plastics. Split latch-on contact cover. Standard disconnectors are equipped with screw terminals, but can be retrofitted with directconnection terminals.

Size	Rated operational current (A)	Std.P	Type
LTL...	160	1	$00-2 / 9$
Size 00	250	1	$1-2 / 9$
Size 1	630	1	$3-2 / 9$
Size 3			

Sizes 00-4a / 160A-1600A

3 -pole / surface mounting AC 690V

Product definition

LV HRC fuse switch - disconnectors in accordance with EN 60947-3 with swing-in device for accomodating 3 LV HRC fuse - links in accordance with DIN 43620, sizes 00-4a / 160 A-1600 A.

Applications

Switchgear for system, cable and motor protection in three - phase systems up to 690 V AC. The disconnectors are fitted in switchgear cabinets or insulating cases.

Operational principle

Usingmanually - operated swing - in devices, the LV HRC fuse - links are swung in (making operation) and pulled out (breaking operation).

Product construction

Swing-in devicemade of halogen - free self - extinguishing plastics. Size 00 and 1 disconnectorswith seal. Split latch-on contact cover. Standard disconnectors are equipped with bolt connections, but can be retrofitted with direct
 - connection terminals.

Size	Rated operational current (A)	Switched poles	Electronic fuse monitor	Quasi-instantaneous circuit	Std.P	Type
LTL...						
Size 00	160	3-pole	Without	Without	1	00-3/9
Size 00	160	3 -pole	With	Without	1	00-3/9/ES00
Size 1	250	3-pole	Without	Without	1	1-3/9
Size 1	250	3 -pole	With	Without	1	1-3/9/ES00
Size 2	400	3-pole	Without	Without	1	2-3/9
Size 2	400	3 -pole	With	Without	1	2-3/9/ES00
Size 3	630	3-pole	Without	Without	1	3-3/9
Size 3	630	3-pole	With	Without	1	3-3/9/ES00
Size 4a	1250	1-pole	Without	Without	1	4A-3X/1250/8
Size 4a	1250	3-pole	Without	With	1	4A-3X3/1250/8/Q
Size 4a	1600	1-pole	Without	Without	1	4A-3X/1600/8
Size 4a	1600	1-pole	Without	With	1	4A-3X/1600/8/Q
Size 4a	1250	3-pole	Without	Without	1	4A-3X3/1250/8
Size 4a	1250	1-pole	Without	With	1	4A-3X/1250/8/Q
Size 4a	1600	3-pole	Without	Without	1	4A-3X3/1600/8
Size 4a	1600	3 -pole	Without	With	1	4A-3X3/1600/8/Q

Sizes 00-3 / 160A-630A

4 -pole / surface mounting AC 690V

Product definition

LV HRC fuse switch - disconnectors in accordance with EN 60947-3 with swing-in device for accomodating 4 LV HRC fuse-links in accordance with DIN 43620 or 3 LV HRC fuse - links and one disconnecting blade, sizes 00-3/160 A - 630 A.

Applications

Switchgear for system, cable and motor protection in three - phase networks (TN-S networks, separate N and PE conductors). Operational principle
Usingmanually-operated swing - in devices, the LV HRC fuse - links are swung in (making operation) and pulled out (breaking operation). All 4 poles are switched simultaneously.

Product construction

Swing-in device made of halogen - free self - extinguishing plastics. Split latch - on contact cover. Standard disconnectors are equipped with screw terminals, but can be retrofitted with direct-connection terminals.

Size	Rated operational current (A)	Std.P	Type
LTL...			
Size 00	160	1	$00-4 / 9$
Size 1	250	1	$1-4 / 9$
Size 3	630	1	$3-4 / 9$

LV HRC fuse switch-disconnectors

Technical data for fuse switch-disconnectors (in accordance with IEC/EN 60947-3 and VDE 0660 Part 107)

Type				LTLOO-1/9				LTL1-2/9			
				LTL00-2/9				LTL1-3/9			
				LTLO0-3/9				LTL1-3/9/60			
				LTLOO-3/9/40-60				LTL1-3/9/100			
				LTLOO-4/9				LTL1-4/9			
				LTLLOOGG-3/9				LTL1aG-3/9			
	Rated operational voltage	$U_{\text {U }}$	V	AC500	AC690	DC220	DC440	AC500	AC690	DC220	DC440
	Rated operational current	1	A	160	100	160	100	250	200	250	200
	Conventional free air thermal current with fuses	$\mathrm{I}_{\text {th }}$	A	160	100	160	100	250	200	250	200
	Conventional free air thermal current with solid links	$\mathrm{I}_{\text {th }}$	A	210(TM00)				325()TM1			
	Rated frequency	-	Hz	40-60	40-60	-	-	40-60	40-60	-	-
	Rated insulation voltage	U_{i}	V	AC750				AC750			
	Rated conditional short-circuit current	-	kAeff	50	50	25	25	50	50	25	25
	Rated short-time withstand current (1sec)	$\mathrm{I}_{\text {cw }}$	kAeff								
	Utilization category	-	-	AC-22B	AC-22B	DC-22B	DC-21B	AC-22B	AC-22B	DC-22B	DC-21B
	Rated making capacity	-	A	480	300	640	150	750	600	1000	300
	Rated breaking capacity	-	A	480	300	640	150	750	600	1000	300
	Rated impulse withstand voltage	$\mathrm{U}_{\text {imp }}$	kV	8							
	Operating cycles with current	-	-	200	300	200	300	200	200	200	200
	Total power loss at $\mathrm{I}_{\text {th }}$ (without fuse) ${ }^{3)}$	P_{v}	W	6.9	2.7	6.2	2.7	12.9	8.3	8.6	5.5
	Size to DIN 43620	-	-	0				1			
	Max. rated current (gL/gG)	I_{N}	A	160	100	160	100	250	200	250	200
	Max. permis. power loss per fuse-link ${ }^{3}$	P_{v}	W	12				23			
	Operating cycles without current	-	-	1700				1400			
	Weight ${ }^{11}$	-	kg	0,31/0,63/0,71/1,1				1,1/2,15/3,5/4,55			
	Busbar distance (3-pole)	-	mm	40/50/60				60/100			
든츤응응	Flat terminal Bolt diameter	-	-	M8				M10			
	Cable lug (DIN 46235)	-	mm^{2}	$1 \times 10-95$ (max. width 25 mm)				1 $\times 25-150$			
	Flat bar	-	mm	20×10				30×10			
	Tightening torque	Ma	Nm	Dec-15				30-35			
	Clamping cross-section	-	mm^{2}	1,5-70 Cu/ribbon $6 \times 9 \times 0,8$				25-150 Cu/ribbon $6 \times 16 \times 0,8$			
				S00				S1			
	Tightening torque	Ma	Nm	2.6				9.5			
	Clamping cross-section	-	mm^{2}	10-70 Al/Cu				70-150 Al/Cu			
				P 00				P1			
	Tightening torque	Ma	Nm	2.6				4.5			
	Clamping cross-section	-	mm^{2}	$35 \times 95 \mathrm{Al} / \mathrm{Cu}$				$2 \times 70-95 \mathrm{Al} / \mathrm{Cu}$			
				POO-95				P12			
	Tightening torque	Ma	Nm	2.6				4.5			
	Clamping cross-section	-	mm^{2}	$2 \times 1,5-25 \mathrm{Al} / \mathrm{Cu}$							
	Tightening torque	Ma	Nm	9.5							
	Clamping cross-section	-	mm^{2}	1,5-70 Cu/ribbon $6 \times 9 \times 0,8$							
				F50/							
				F70							
	Tightening torque	Ma	Nm	2.6							
	Front side Device fitted										
	Operational state	-	-	IP20							
	Front cover open	-	-	IP10							
	Ambient temperature ${ }^{2)}$	T_{u}	${ }^{\circ} \mathrm{C}$	-25 to +55							
	Rated operating mode	-	-	Continuous operation							
	Actuation	-	-	Dependent manual operation							
	Mounting position	-	-	Vertical, horizontal							
	Altitude	-	m	Up to 2000							
	Pollution degree	-	-	3							
	Overvoltage category	-	-	III							

LV HRC fuse switch－disconnectors

Technical data for fuse switch－disconnectors （in accordance with IEC／EN 60947－3 and VDE 0660 Part 107）

Type				LTL2－3／9				LTL3－1／9			
				LTL2aG－3／9				LTL3－2／9			
								LTL3－3／9			
								LTL3－4／9			
								LTL3－aG3／9			
	Rated operational voltage	$U_{\text {e }}$	V	AC500	AC690	DC220	DC440	AC500	AC690	DC220	DC440
	Rated operational current	${ }_{\text {I }}$	A	400	315	400	315	630	500	630	500
	Conventional free air thermal current with fuses	I_{4}	A	400	315	400	315	630	500	630	500
	Conventional free air thermal current with solid links	I_{th}	A	520（TM2）				1000（TM3）			
	Rated frequency	－	Hz	40－60	40－60	－	－	40－60	40－60	－	－
	Rated insulation voltage	U_{i}	V	AC750				AC750			
	Rated conditional short－circuit current	－	kAeff	50	50	25	25	50	50	25	25
	Rated short－time withstand current（1sec）	$\mathrm{I}_{\text {cw }}$	kAeff								
	Utilization category	－	－	AC－22B	AC－22B	DC－22B	DC－21B	AC－22B	AC－22B	DC－22B	DC－21B
	Rated making capacity	－	A	1200	945	1600	475	1890	1500	2520	750
	Rated breaking capacity	－	A	1200	945	1600	475	1890	1500	2520	750
	Rated impulse withstand voltage	$U_{\text {imp }}$	kV	（ 8							
	Operating cycles with current	－	－	200	200	200	200	200	200	200	200
	Total power loss at I_{t}（ （ ${ }^{\text {athout fuse）}{ }^{3)}}$	P_{v}	W	27	16.7	18	11.2	52	32.8	34.6	21.8
n兰药	Size to DIN 43620	－	－	2				3			
	Max．rated current（gL／gG）	$\mathrm{I}_{\text {N }}$	A	400	315	400	315	630	500	630	500
	Max．permis．power loss per fuse－link ${ }^{3}$	P_{v}	W	34				48			
	Operating cycles without current	－	－	800				800			
	Weight ${ }^{11}$	－	kg	3.1				1，7／3，92／5，35／7，1			
	Busbar distance（3－pole）	－	mm	60／100				60／100			
$\begin{aligned} & \text { 든 } \\ & \text { U } \\ & \text { 若 } \\ & \text { 苛 } \end{aligned}$	Bolt diameter	－	－	M 10				M10			
	Cable lug（DIN 46235）	－	mm^{2}	$1 \times 25-240$				$1 \times 25-300$			
	Flat bar	－	mm	30×10				40×10			
	Tightening torque	Ma	Nm	30－35				30－35			
	Clamping cross－section	－	mm^{2}	25－240 $\mathrm{Cu} / \mathrm{r} .10 \times 16 \times 0,8$				Band $11 \times 21 \times 1$			
				S2				53			
	Tightening torque	Ma	Nm	23				23			
	Clamping cross－section	－	mm^{2}	120－240 Al／Cu				120－240 Al／Cu			
				P2				P3			
	Tightening torque	Ma	Nm	11				11			
	Clamping cross－section	－	mm^{2}	2x $120-150 \mathrm{Al} / \mathrm{Cu}$				$2 \times 120-240 \mathrm{Al} / \mathrm{Cu}$			
				P 22				P32			
	Tightening torque	Ma	Nm	11				11			
	Front side Device fitted										
	Operational state	－	－	IP20							
	Front cover open	－	－	IP10							
	Ambient temperature ${ }^{2 /}$	T_{u}	${ }^{\circ} \mathrm{C}$	-25 to＋ 55							
	Rated operating mode	－	－	Continuous operation							
	Actuation	－	－	Dependent manual operation							
	Mounting position	－	－	Vertical，horizontal							
	Altitude	－	m	Up to 2000							
	Pollution degree	－	－	3							
	Overvoltage category	－	－	III							

Technical data for fuse switch-disconnectors
(in accordance with IEC/EN 60947-3 and VDE 0660 Part 107)

Type				$\begin{aligned} & \text { LTL4a-1/1250 } \\ & \text { LTL4a-3/1250 } \end{aligned}$		$\begin{aligned} & \text { LTL4a-1/1600 } \\ & \text { LTL4a-1/1600 } \end{aligned}$	
	Rated operational voltage	$U_{\text {U }}$	V	AC500	AC690	AC500	AC690
	Rated operational current	1	A	1250	1000	1600	1000
	Conventional free air thermal current with fuses	$\mathrm{I}_{\text {th }}$	A	1250	1000	1600	1000
	Conventional free air thermal current with solid links	I_{t}	A	1250	1600		
	Rated frequency	-	Hz	40-60			
	Rated insulation voltage	U_{i}	V	AC800			
	Rated conditional short-circuit current	-	kAeff	80	80	80	80
	Rated short-time withstand current (1sec)	$\mathrm{I}_{\text {cw }}$	kAeff				
	Utilization category	-	-	AC-22B	AC-21B	AC-22B	AC-21B
	Rated making capacity	-	A	3750	1500	2400	1500
	Rated breaking capacity	-	A	3750	1500	2400	1500
	Rated impulse withstand voltage	$U_{\text {imp }}$	kV	8			
	Operating cycles with current	-	-	100			
	Total power loss at $\mathrm{l}_{\text {th }}$ ((ithout fuse) 3)	P_{v}	W	32	20.5	52	33.3
熏	Size to DIN 43620	-	-	4a			
	Max. rated current (gL/gG)	I_{N}	A	1250	1000	1600	1000
	Max. permis. power loss per fuse-link ${ }^{3}$	P_{v}	W	110	110	164	164
	Operating cycles without current	-	-	500			
	Weight ${ }^{11}$	-	kg	5,3/15,7			
	Bolt diameter	-	-	1x M16		$2 \times \mathrm{M12}$	
	Cable lug (DIN 46 235)	-	mm^{2}	400		-	
	Flat bar	-	mm	max. 80×30			
	Tightening torque	Ma	Nm	50-60		35-40	
	Clamping cross-section	-	mm^{2}	$\begin{gathered} \text { KV2HG/2/300/AF40 } \\ -50 \end{gathered}$	$2 \times(95-300)$	KV2HG/2/300/AF4050	$2 \times(95-300)$
	Tightening torque	Ma	Nm	40			
	Clamping cross-section	-	mm^{2}	K3G/3/A40-50	$3 \times(95-150)$	K3G/3/A40-50	$3 \times(95-150)$
	Tightening torque	Ma	Nm	50			
	Clamping cross-section	-	mm^{2}	K3G/4/A40-50	$4 \times(95-150)$	K3G/4/A40-50	4x (95-150)
	Tightening torque	Ma	Nm	50			
	Operational state	-	-	IP20			
	Front cover open	-	-	IP10			
	Ambient temperature ${ }^{2)}$	T_{v}	${ }^{\circ} \mathrm{C}$	-25 to +55			
	Rated operating mode	-	-	Continuous operation			
	Actuation	-	-	Dependent manual operation			
	Mounting position	-	-	Vertical			
	Altitude	-	m	Up to 2000			
	Pollution degree	-	-	3			
	Overvoltage category	-	-	III			

LV HRC fuse switch-disconnectors

Technical data for switch - disconnectors

Type				LTL1-3/1200	LTL2-3/1200	LTL3-3/1200
	Rated operational voltage	$U_{\text {e }}$	V	AC 1200	AC 1200	AC 1200
	Rated operational current	1.	A	250	400	630
	Conventional free air thermal current with fuses	$\mathrm{I}_{\text {th }}$	A	200	315	630
	Conventional free air thermal current with solid links	$\mathrm{I}_{\text {th }}$	A	325	520	1000
	Rated frequency	-	Hz	40-60	40-60	40-60
	Size to DIN 43620	-	-	1	2	3
	Max. rated current (gL/gG)	I_{N}	A	200	315	630
	Max. permis. power loss per fuse-link	P_{v}	W	25	35	70
	Weight ${ }^{11}$	-	kg	6.1	6.5	7.5
	Flat terminal Bolt diameter	-	-	M9	M10	M16
	Cable lug (DIN 46235	-	mm^{2}	25-150	25-240	25-300
	Flat bar	-	mm	30×10	30×10	40×10
	Tightening torque	Ma	Nm	30-35	30-35	30-35
$\begin{array}{\|l\|} \hline \text { 흘 } \\ \text { 亮 } \end{array}$	Front side - operational state - Device fitted	-	-		IP 20	
	Front cover open		-		IP 10	
	Ambient temperature ${ }^{2)}$	T_{v}	${ }^{\circ} \mathrm{C}$		-25 to +55	
	Rated operating mode	-	-		Cont. operation	
	Actuation	-	-		-	
	Mounting position	-	-		Vert./ horizontal	
	Altitude	-	m		Up to 2000	
	Pollution degree	-	-		3	
	Overvoltage category	-	-		III	

[^0]
Technical data for fuse switch - disconnectors

(in accordance with IEC/EN 60947-3 and VDE 0660 Part 107)

Type					LTLO00-3/9/60...		
	Rated operational voltage		$U_{\text {e }}$	V	AC400	AC500	DC220
	Rated operational current		1	A	125	100	100
	Conventional free air thermal current with fuses		$\mathrm{I}_{\text {th }}$	A	125	100	100
	Conventional free air thermal current with solid links		$\mathrm{I}_{\text {th }}$	A	160(TM00)	160(TMOO)	160(TM00)
	Rated frequency		-	Hz	40-60	40-60	
	Rated insulation voltage		U_{i}	V	AC500	AC500	AC500
	Rated conditional short-circuit current		-	kAeff	50	50	25
	Rated short-time withstand current (1sec)		$\mathrm{I}_{\text {cu }}$	kAeff	-	-	-
	Utilization category		-	-	AC22B	AC22B	DC22B
	Rated making capacity		-	A	300	300	400
	Rated breaking capacity		-	A	300	300	400
	Rated impulse withstand voltage		$U_{\text {imo }}$	kV		8	
	Operating cycles with current		-	-	300	300	300
	Total power loss at $\mathrm{I}_{\text {th }}$ (without fuse) ${ }^{31}$		P_{v}	W	18	11.5	11.5
	Size to DIN 43620		-	-	0	0	0
	Max. rated current (gL/gG)		$\mathrm{I}^{\text {N }}$	A	125	100	100
	Max. permis. power loss per fuse-link ${ }^{3 /}$		P_{v}	W		12	
	Operating cycles without current		-	-		1700	
	Weight ${ }^{11}$		-	kg		0.57	
	Busbar distance (3-pole)		-	mm		60	
	Busbar thickness		-	mm		5a 10	
	Busbar width		-	mm		20a30	
	Flat terminal	Bolt diameter	-	-		-	
		Cable lug (DIN 46235)	-	mm^{2}		-	
		Flat bar	-	mm		-	
		Tightening torque	Ma	Nm		-	
	Terminal	Clamping cross-section	-	mm^{2}	F50	1,5-50	$9 \times 0,8$
		Tightening torque	Ma	Nm	F50		
	Terminal	Clamping cross-section	-	mm^{2}		-	
		Tightening torque	Ma	Nm		-	
	Terminal Clamping cross-section		-	mm^{2}		-	
	Tightening torque		Ma	Nm		-	
	Terminal Clamping cross-section		-	mm^{2}		-	
	Tightening torque		Ma	Nm		-	
	Front side Device fitted	Operational state	-	-		IP 20	
		Front cover open	-	-		IP 10	
	Ambient temperature ${ }^{2 /}$		T_{u}	${ }^{\circ} \mathrm{C}$		-25 to +55	
	Rated operating mode		-	-		inuous opera	
	Actuation		-	-		ent manual op	
	Mounting position		-	-		tical, horizon	
	Altitude		-	m		Up to 2000	
	Pollution degree		-	-		3	
	Overvoltage category		-	-		III	

[^1]
Product definition

CLAMP-TYPE TERMINAL

Direct - connection terminal - clamp - type terminal for Cu conductor and ribbon conductor connection.

V-TERMINAL CLAMP

Direct - connection terminal - V - terminal clamp for Cu conductor and Al conductor connection. OUTPUT INDICATOR
Output indicator for indication of connected or disconnected state.

MECHANICAL FUSE MONITOR

In conjunction with LV HRC fuse - links with striker, the mechanical fuse monitor indicates fuse failure. Thestriker actuates a microswitch when the fuse-link is disconnected. The microswitch then passes the failure signal to a control centre.

OVERREACHING PROTECTION

The upper and lower latch - on overreaching protection covers the connection contacts or cable lugs or bare protruding conductors. The live parts are covered probe-safe.

HANDLE PROTECTION FOR BLADES

The overreaching protection for the contact blades of the LV HRC fuse - links ismovably fitted in the front plate. When the front plate is swung out, the overreaching protection is swung out from the front plate on the face, thus covering the contact blades of the fuse - links probe - safe.

SHROUD

The latch-on covering panels cover the switchboard apertures and ensure IP30 protection in the connected state.

DIN RAIL FIXING PARTS

The retrofittable DIN rail fixing parts consist of two hang - up hooks and a slide. They allow size 00 LV HRC fuse switch - disconnectors to be fixed on two standard rails in accordance with EN 50022 with 100 mm to 150 mm distance between rail centres.

PROTECTIVE COVER INTERLOCK

The protective cover interlock can be latched into the protective covers. It is interlocked with the basic frame by a 90° turn of a screwdriver.

ELECTRONIC FUSE MONITORING

The electronic fuse monitoring feature ES00 can be used in the voltage range AC 400 V to AC 690 V . It is self-powered and the infeed can be at either end.

Applications

Direct-connection terminals replace cable lugs. They are suitable for Cu conductors, ribbon conductors and Cu busbars. Mechanical fuse monitors are used for remote indication of fuse failure. The overreaching protection prevents accidental contact with live parts. The overreaching protection for the contact blades of the LV HRC fuse-links is used for supply frombelow. It prevents accidental contact with the live contact blades of the fuse - links when the front plate is not entirely closed. Covering panels are used for panel mounting. They ensure complete covering of the panel cutouts and thus IP30 protection. The DIN rail fixing parts for size 00 LV HRC fuse switch - disconnectors are used in control cabinets in combination with miniature circuit - breakers and in distribution systems in which only standard rails in accordance with EN 50022 are integrated. Protective cover interlocks ensure that the covers can only be removed by a tool, thus complying with BGV A 2 requirements.

Accessories

Flat termination	Std.P	Type
Size 00	3	F-LTL00-M8
Size 1	3	F-LTL1-M10
Size 2	3	F-LTL2-M10
Size 3	3	F-LTL3-M10

Clamp-type terminal	Std.P	Type
Size $00 / 1,5-70 \mathrm{~mm}^{2} \mathrm{Cu}$ (also for GU00)	3	S00-Z
Size 1	3	S1
Size 2	3	S2
Size 3	3	S3

V-terminal clamp	Std.P	Type
Size 00/10-70 $\mathrm{mm}^{2} \mathrm{AI} / \mathrm{Cu}$	3	P0070-Z
Size 1	3	P1
Size 2	3	P2
Size 3	3	P3

Handle protection 3-pole, surface mounting	Std.P	Type
Size 00, top or bottom	1	LTL00-3
Size 1, top	1	GO-LTL1-3
Size 2, top	1	GO-LTL2-3
Size 3, top (also for busbar mounting)	1	GO-LTL3-3
Size 1, bottom	1	GU-LTL1-3
Size 2, bottom	1	GU-LTL2-3
Size 3, bottom, (also for busbar mounting)	1	GU-LTL3-3

Handle protection 3-pole, busbar mounting	Std.P	Type
Size 00, top, system-measurement 195mm		GO-LTL00-3/195
Size 00, top, extended, system-measurement 230mm	1	GOV-LTL00-3/230
Size 2, top		GOV-LTL2-3
Size 1, top, extended		GOV-LTL1-3
Size 00, bottom, system-measurement 195mm	GU-LTL00-3/195	
Size 2, bottom	GUV-LTL2-3	
Size 00, bottom, extended, system-measurement 230mm		
Size 1, bottom, extended		
Size 2, extension top/bottom	GUV-LTL00-3/230	

Handle protection 1-pole, surface- and busbar mounting	Std.P	Type
Size 00, top or bottom	1	GOU-LTL00-1
Size 1, top or bottom	1	GOU-LTL1-1
Size 3, top or bottom	1	GOU-LTL3-1

Dimensional drawings

LTL1-1/9, LTL3-1/9

Type	A	B	C	D	E	F	G	H	I
LTL1-1/9	69	230	317	68	119	16,5	115	177	25
LTL3-1/9	91	270	430	96	147	9	135	220,5	30,5

Dimensional drawings

LTL4A-1x/1250(1600)/8

	B	C
1250 A	270	315
1600 A	311	339

LTL00-2/9

Dimensional drawings

LTL1-2/9, LTL3-2/9

Type	A	B	C	D	E	F	G	H	I
LTL1-2/9	138	230	317	68	123,5	23	115	177	25
LTL3-2/9	182	270	430	96	151,5	15,5	135	220,5	30,5

LTL...-3/9, LTL...-3/9/ES00

Type	A	B	C	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	H	I	K	L	L1
LTLO0-3/9	105,5	149	220	45	86	20,5	74,5	120	17	33	116	126
LTL1-3/9	184	230	317	68	119	16,5	115	177	25	58	149	159
LTL2-3/9	210	256	397	81	133	16,5	128	205	25	66	163	173
LTL3-3/9	254	270	430	96	147	9	135	220,5	30,5	82	177	187

SE/ Dimensional drawings

LTL4A-3x(3)/.../8/(Q)

1250A

	B	C
1250 A	270	315
1600 A	311	339

LTL00-4/9

Dimensional drawings

LTL1-4/9, LTL3-4/9

Type	A	B	C	D	E	F	G	H	I	K
LTL1-4/9	253	230	317	68	123,5	23	115	177	25	58
LTL3-4/9	345	270	430	96	151,5	15,5	135	220,5	30,5	82

S00-Z

P0070-Z

Dimensional drawings

S00, S1, S2, S3

Type	A	B	C	D	E	F
S00	25	15	15	M5	Max. 15	5,5
S1	37	20	25	M6	Max. 28	6,5
S2	42	22	28	M8	Max. 30	8,5
S3	50	25	30	M8	Max. 30	8,5

P1, P2, P3, P12, P22, P32

Type	A	B	C	D	E	F
P0070	25	15	15	M5	Max. 25	5,5
P0095	29	15	18	M5	Max. 28	5,5
P1	37	20	25	M6	Max. 30	6,5
P12	37	20	25	M6	Max. 42	6,5
P2	42	22	28	M8	Max. 40	8,5
P22	42	22	28	M8	Max. 55	8,5
P3	50	25	30	M8	Max. 44	8,5
P32	50	25	30	M8	Max. 66	8,5

LV HRC strip type fuseswitch - disconnectors are mainly used for power distribution in low voltage assemblies in accordance with IEC/EN 60439-1 (VDE 0660 Teil 500). The strips are type tested in accordance with IEC/ EN 60947-3. Size 00-4a 1 -pole and 3-pole switchable versions are available.
-Top or bottom cable connection as required

- Optimum fuse pick - up contact
- Direct - connection terminal
- Double strip up to 2000 A
- 910 A compact switch strips for 630 kVA transformer supply
- Multipurpose cover
- Modular design
- High breaking capacity
- Low power loss
- Use of standard earthing accessories

Mounting of LV HRC fuse switch strips SL00-3 x $\mathbf{3}$ /100

Example with device and system accessories, busbar distance 100 mm , 3 -pole switchable

1 Strip base U-SLOO-3×3/100
2 Swing-in device D-SLOO-3×3/100
3 Actuating lever SH - SLOO- $3 \times 3 / 100$
4 Terminal compartment cover HA - SLOO - $3 \times 3 / 100$
5 Terminal compartment extension HAV - SLOO-3 $\times 3 / 100$
6 Flat terminal F-M8×16
7 Clamp - type terminal S00-Z
8 V-terminal clamp P0070-Z
9 Elevator clamp F70

10 V box terminal KU00
11 V box terminal KM00
12 Busbar terminals SK- SLOO
13 Position indicator EV - SL00/100
14 Current transformers WKD50
15 Holder for spacer roller HDR20
16 Cover holder AH - SL
17 Cover holder with quick - release lock AH - SL/S
18 Cover support AHCT - SL

Mounting of LV HRC fuse switch strips SL1-3 x 3, SL2-3 x 3, SL3-3 x 3

Example with device and system accessories, busbar distance 185mm, 3-pole switchable

Sizes 00-4a / 160A-2000A

1 - pole switchable

Product definition

3 - pole LV HRC strip-type fuse switch-disconnectors for mounting on busbars. They combine three lengthwise - arranged
1 - pole fuse switch - disconnectors in one unit. One contact of each phase (incoming contact) is connected to one phase of a 3 - pole busbar system. The other contacts(outgoing contacts) are equipped with conductor terminals.

Applications

The universal LV HRC fuse switch - disconnectors are used in low voltage distribution cabinets, network and transformer stations and cable distribution cabinets of power supply and industrial companies, where they complywith all power distribution requirements. The following current ratings are available: $160 \mathrm{~A}, 250 \mathrm{~A}, 400 \mathrm{~A}, 630 \mathrm{~A}$, size $3 / 910 \mathrm{~A}$, size $3 / 1000 \mathrm{~A}$ with disconnecting blades, size $3 / 1250 \mathrm{~A}$ as double strip, size $3 / 1600 \mathrm{~A}$ as double strip with disconnecting blades, size $3 / 2000 \mathrm{~A}$ as double strip with disconnecting blades. Still, the series in size 4 a is available up to 1250 A .

Operational principle

The fuse switch - disconnectors are used for accomodating LV HRC fuse - links and thus for breaking of circuits. They are 1-pole switchable and can be switched under load. The universal swing - in devices allow the use of current meters in conjunction with meter fuses and piggyback fuses for worksite tapping. The cable outlet (top or bottom) can be freely selected on site.

Product construction

The one - piece strip body, which accomodates current - carrying parts, consists of high - strength glass -fibre - reinforced polyester. The silver - plated contact system for accomodating the LV HRC fuse - links equipped with tin - plated discharge rails ensures low power loss, optimum thermal characteristics and high switching capacity. The downward connecting bars are designed for flat termination as standard, but it is also possible to fit direct - connection terminals. The live parts of size 1-3 strips, such as contacts and discharge rails, remain back - of - hand proof after removal of the upper part due to the contact coverswith integrated arcing chamber which remain at the base. Twist locks allow straightforward removal and fitting of the upper parts of the stripswith the swing-in devices.

Size	Busbar system	Type of connection, sizes $00-3$ (F: flat termination, B: box terminal, S: screw terminal, ST: stud, MB: multiple box terminal)	Cable outlet (C: connection, V: variable, R: rear, T: top, B: bottom, L: lateral)	Swing - in device (S: standard, RH: retractable handle)	Std.P	Type
0	185 mm	F	T/B	S	1	00-3X/F
0	185 mm	F	T/B	RH	1	00-3X/F/GV
0	185 mm	B	T/B	S	1	00-3X/KU00
0	185 mm	B	T/B	RH	1	00-3X/KU00/GV
1	185 mm	S	T/B	S	1	1-3X/3A
1	185 mm	S	T/B	RH	1	$1-3 X / 3 A / G V$
1	185 mm	ST, M12x35	T/B	S	1	$1-3 X / 4 A$
1	185 mm	ST, M12x35	T/B	RH	1	$1-3 X / 4 A / G V$
1	185 mm	ST, M12x60	T/B	S	1	$1-3 \mathrm{X} / 4 \mathrm{~A}-60$
1	185 mm	ST, M12x60	T/B	RH	1	1-3X/4A-60/GV
1	185 mm	MB, fixed	T/B	S	1	$1-3 X / 9 / \mathrm{KM} 2 \mathrm{G}$
1	185 mm	MB, fixed	T/B	RH	1	1-3X/9/KM2G/GV
1	185 mm	MB, loose	T/B	S	1	1-3X/9/KM2G - F
1	185 mm	MB, loose	T/B	RH	1	1-3X/9/KM2G-F/GV
2	185 mm	S	T/B	S	1	2-3X/3A
2	185 mm	S	T/B	RH	1	2-3X/3A/GV
2	185 mm	ST, M12x35	T/B	S	1	2-3X/4A
2	185 mm	ST, M12x35	T/B	RH	1	2-3X/4A/GV
2	185 mm	ST, M12x60	T/B	S	1	$2-3 X / 4 A-60$
2	185 mm	ST, M12x60	T/B	RH	1	2-3X/4A-60/GV
2	185 mm	MB, fixed	T/B	S	1	$2-3 X / 9 / \mathrm{KM} 2 \mathrm{G}$
2	185 mm	MB, fixed	T/B	RH	1	2-3X/9/KM2G/GV
2	185 mm	MB, loose	T/B	S	1	2-3X/9/KM2G-F
2	185 mm	MB, loose	T/B	RH	1	2-3X/9/KM2G-F/GV
3/1000A	185 mm	S	CRT	S	1	3-3X/1000/ARO
3/1000A	185 mm	S	T/B	S	1	$3-3 \mathrm{X} / 1000 / \mathrm{HA}$
3	185 mm	S	T/B	S	1	$3-3 X / 3 \mathrm{~A}$
3	185 mm	S	T/B	RH	1	3-3X/3A/GV
3	185 mm	ST, M12x35	T/B	S	1	$3-3 X / 4 A$
3	185 mm	ST, M12x35	T/B	RH	1	$3-3 \mathrm{X} / 4 \mathrm{~A} / \mathrm{GV}$
3	185 mm	ST, M12x60	T/B	S	1	$3-3 \mathrm{X} / 4 \mathrm{~A}-60$
3	185 mm	ST, M12x60	T/B	RH	1	3-3X/4A-60/GV
3	185 mm	MB, fixed	T/B	S	1	$3-3 \mathrm{X} / 9 / \mathrm{KM} 2 \mathrm{G}$
3	185 mm	MB, fixed	T/B	RH	1	3-3X/9/KM2G/GV
3	185 mm	MB, loose	T/B	S	1	3-3X/9/KM2G - F
3	185 mm	MB, loose	T/B	RH	1	3-3X/9/KM2G-F/GV
3/910 A	185 mm	S	T/B	S	1	3-3X/910/AO/AU-100
3/910 A	185 mm	S	T/B	S	1	3-3X/910/AO/AU-65
3/910 A	185 mm	S	T/B	S	1	3-3X/910/AO/AU - 75
3/910 A	185 mm	S	CRT	S	1	3-3X/910/ARO
3/910 A	185 mm	S	CRT, 110	S	1	3-3X/910/ARO/110
3/910 A	185 mm	S	CRBL	S	1	3-3X/910/ARUS
3/910 A	185 mm	S	T/B	S	1	3 -3X/910/HA
3/910 A	185 mm	S	CRT, long	S	1	3-3x/910/AORL
3/910 A	185 mm	S	CRT, short	S	1	3-3x/910/AORK
3/910 A	185 mm	S	T	S	1	3-3X/910/AO-102
3/1250 A	185 mm	S	T/B	S	1	3-3X2/1250/HA
3/1600 A	185 mm	S	T/B	S	1	3-3X2/1600/HA
3/2000A	185 mm	S	T/B	S	1	3 - $3 \times 2 / 2000 / \mathrm{HA}$
4A	185 mm	S	B	S	1	TL4A - 3AS/3X/4
4A/ width 147	185 mm	S	B	S	1	TL4A -3AS/3X/2X3A/Q/147K
4A/ width 147	185 mm	S	T	S	1	TL4A-3AS/3X/2X3A/Q/147K/AO
4A	185 mm	S	T	S	1	TL4A - 3AS/3X/4/AO

Sizes 00-3/160 A-2000 A

3-pole switchable

Product definition

3 - pole LV HRC strip-type fuse switch - disconnectors for mounting on busbars. They combine three lengthwise - arranged 1-pole fuse switch - disconnectors in one unit. One contact of each phase (incoming contact) is connected to one phase of a 3 - pole busbar system. The other contacts (outgoing contacts) are equipped with conductor terminals.

Applications

The universal LV HRC fuse switch - disconnectors are used in low voltage distribution cabinets, network and transformer stations and cable distribution cabinets of power supply and industrial companies, where they complywith all power distribution requirements. The following current ratings are available: $160 \mathrm{~A}, 250 \mathrm{~A}, 400$ A, 630 A, size $3 / 910$ A, size $3 / 1000$ A with disconnecting blades, size $3 / 1250 \mathrm{~A}$ as double strip, size 3/1600 A as double strip with disconnecting blades, size 3/2000 A as double strip with disconnecting blades.

Operational principle

The fuse switch - disconnectors are used for accomodating LV HRC fuse - links and thus for breaking of circuits. They are 3 -pole switchable and can be switched under load. The universal swing - in devices allow the use of current meters in conjunction with meter fuses and piggyback fuses for worksite tapping. The cable outlet (top or bottom) can be freely selected on site.

Product construction

The one-piece strip body, which accomodates current - carrying parts, consists of high - strength glass -fibre - reinforced plastic. The silver - plated contact system for accomodating the LV HRC fuse - links equipped with tin - plated discharge rails ensures low power loss, optimum thermal characteristics and high switching capacity. The downward connecting bars are designed for flat termination as standard, but it is also possible to fit direct - connection terminals. The live parts of size $1-3$ strips, such as contacts and discharge rails, remain back - of - hand proof after removal of the upper part due to the contact coverswith integrated arcing chamber which remain at the base. Twist locks allow straightforward removal and fitting of the upper parts of the stripswith the swing - in devices. Electronic fuse monitor PLFuse (ES00) The PLFuse electronic fuse monitor is used for continuous fuse monitoring in 3 - phase low voltage networks. The potential - free relay contacts of the fuse monitor allow the make/break contacts to be designed for individual or centralized fault indication as required. No fuse failure is indicated in the event of network disconnection or phase failure.

Size	Busbar system	Type of connection, sizes 00-3 (F: flat termination, B: box terminal, S: screw terminal, ST: stud, MB: multiple box terminal, F70: elevator terminal)	Cable outlet (C: connection, V:variable, R: rear, T: top, B: bottom, L: lateral)	Electronic fuse monitor ($400-690$ V AC)	Std.P	Type
0	100 mm	F	B	With	1	00-3X3/100/F/ESO0
0	100 mm	F	T/B	Without	1	00-3X3/100/F
0	100 mm	F70	T/B	Without	1	00-3X3/100/F70
0	100 mm	B	T/B	Without	1	00-3X3/100/KU00
0	100 mm	B	T/B	Without	1	00-3X3/100/KМ00
0	185 mm	F	T/B	Without	1	00-3X3/F
0	185 mm	B	T/B	Without	1	$00-3 \times 3 / K U$
1	185 mm	S	T/B	Without	1	1-3X3/3A
1	185 mm	5	B	With	1	1-3X3/3A/ES00
1	185 mm	ST, M12x35	T/B	Without	1	$1-3 \times 3 / 4 \mathrm{~A}$
1	185 mm	ST, M12×60	T/B	Without	1	1-3X3/4A-60
1	185 mm	MB, loose	T/B	Without	1	1-3X3/9/KM2G - F
1	185 mm	MB, fixed	T/B	Without	1	1-3X3/9/KM2G
2	185 mm	S	T/B	Without	1	2-3X3/3A
2	185 mm	5	B	With	1	2-3X3/3A/ES00
2	185 mm	ST, M12×35	T/B	Without	1	2-3X3/4A
2	185 mm	ST, M12×60	T/B	Without	1	2-3X3/4A-60
2	185 mm	MB, fixed	T/B	Without	1	2-3X3/9/KM2G
2	185 mm	MB, loose	T/B	Without	1	2-3X3/9/KM2G - F
3/1000A	185 mm	S	T/B	Without	1	3-3X3/1000/HA
3	185 mm	S	T/B	Without	1	$3-3 \times 3 / 3 \mathrm{~A}$
3	185 mm	S	B	With	1	3-3X3/3A/ES00
3	185 mm	ST, M12×35	T/B	Without	1	$3-3 \times 3 / 4 \mathrm{~A}$
3	185 mm	ST, M12×60	T/B	Without	1	3-3X3/4A-60
3	185 mm	MB, fixed	T/B	Without	1	3-3X3/9/KM2G
3	185 mm	MB, loose	T/B	Without	1	3-3X3/9/KM2G - F
3/910A	185 mm	S	T/B	Without	1	3-3X3/910/AO/AU-65
3/910A	185 mm	S	T/B	Without	1	3-3X3/910/AO/AU-75
3/910A	185 mm	S	T	Without	1	3-3X3/910/AORK
3/910A	185 mm	S	T	Without	1	3-3X3/910/AORL
3/910A	185 mm	S	T	Without	1	3-3X/910/AO-102
3/910A	185 mm	S	T/B	Without	1	3-3X3/910/AO/AU-100
3/910A	185 mm	S	CRT	Without	1	3-3X3/910/ARO
3/910A	185 mm	S	CRBL	Without	1	3-3X3/910/ARUS
3/910A	185 mm	S	T/B	Without	,	$3-3 \times 3 / 910 / \mathrm{HA}$
3/1250A	185 mm	S	T/B	Without	1	3-3X6/1250/HA
3/1600A	185 mm	S	T/B	Without	1	3 - 3X6/1600/HA
3/2000A	185 mm	S	T/B	Without	1	$3-3 \times 6 / 2000 / \mathrm{HA}$

Size 3 / 630 A - 2000 A

LV HRC busbar disconnect strip, 1 - and 3 - pole switchable

Product definition

LV HRC busbar disconnect strips are 3 - pole LV HRC strip - type fuse switch - disconnectors for mounting on busbars. They combine three lengthwise - arranged 1 - pole fuse switch - disconnectors in one unit. One contact of each phase (incoming contact) is connected to one phase of a 3 - pole busbar system. The lateral outgoing connections allow coupling of a second distribution system.

Applications

The LVHRC busbar disconnect strips are used in low voltage distribution cabinets, network and transformer stations and cable distribution cabinets of power supply and industrial companies, where they complywith all power distribution requirements. The following current ratings are available: 630 A , size $3 / 910 \mathrm{~A}$, size $3 / 1000 \mathrm{~A}$ with disconnecting blades and size $3 / 2000$ A as double strip. Sizes 3 for 1000 A and 2000 A are delivered with disconnecting blades.

Operational principle

The busbar disconnect strips are used for accomodating LV HRC fuse - links and thus for breaking of circuits. They are 1 - and 3 - pole switchable and can be switched under load. The universal swing - in devices allow the use of current meters in conjunction with meter fuses and piggyback fuses for worksite tapping. The terminal lugs led through at the right or left side, which allow coupling of a second busbar system, are arranged in such a way that the neighbouring strip can be fitted in a 100 mm grid.

Product construction

The one - piece strip body, which accomodates current - carrying parts, consists of high - strength glass -fibre - reinforced polyester. The silver - plated contact system for accomodating the LV HRC fuse-links equipped with tin - plated discharge rails ensures low power loss, optimum thermal characteristics and high switching capacity. The lateral (right or left) outgoing connections allow coupling of a second busbar system. The live parts such as contacts and terminal lugs remain back - of - hand proof after removal of the upper part due to the contact coverswith integrated arcing chamber which remain at the base. Twist locks allow straightforward removal and fitting of the upper parts of the stripswith the swing-in devices.

Size	Rated operational current (A)	Switched poles	Disconnecting blade	Busbar disconnection	Std.P	$\begin{gathered} \text { Type } \\ \text { SLT3-3S... } \end{gathered}$
3	630 A	1 - pole		Left side	1	L/3X
3/1000A	1000 A	1 -pole	TM3/1250	Left side	1	L/3X/1000
3/910 A	910 A	1 -pole		Left side	1	L/3X/910
3	630 A	1 -pole		Right side	1	R/3X
3/1000A	1000 A	1 -pole	TM3/1250	Right side	1	R/3X/1000
3/910 A	910 A	1 -pole		Right side	1	R/3X/910
3/2000 A	2000 A	1 -pole	TM3/1250	Right side	1	R/3X2/2000
3	630 A	3 -pole		Left side	1	L/3X3
3/1000 A	1000 A	3 -pole	TM3/1250	Left side	1	L/3X3/1000
3/910 A	910 A	3 -pole		Left side	1	L/3X3/910
3	630 A	3 -pole		Right side	1	R/3X3
3/1000 A	1000 A	3 -pole	TM3/1250	Right side	1	R/3X3/1000
3/910 A	910 A	3 -pole		Right side	1	R/3X3/910
3/2000 A	2000 A	3 -pole	TM3/1250	Right side	1	R/3X6/2000

Product definition

TERMINALS

Terminals are connectors for direct connection between connecting bars and lines.

V-TERMINAL CLAMP

The P0070-ZV - terminal clamps are suitable for fitting to size 00 strips for the connection of circular and sector - shaped Al and Cu conductors.

CLAMP - TYPE TERMINAL

The SOO-Z terminals are suitable for fitting to size 00 strips for the connection of circular Cu conductors and Cu ribbon conductors. KIT FOR 2 CABLE LUGS
The FK -2×240 kit is used for the connection of 2 cable lugs ofmax. $2 \times 300 \mathrm{~mm}^{2}$ perphase tosize 1 to 3 stripswith screw terminal. It is suitable for cable lugs up to a width of 43 mm .

KIT FOR 2 CABLES, TERMINAL RETROFITTING KIT

The clamping kit is used for two cables at one phase.

BUSBAR TERMINALS FOR SIZE 00

Busbar terminals are used for drill - free direct contacting of the strip - fuseways on the busbars.

BUSBAR TERMINALS FOR SIZE 1-3

With the aid of the busbar clamps, strips of the sizes 1 to 3 can be mounted directly on busbars without drilling holes. The SK clamps are available for busbars with thicknesses of 5 mm to 10 mm .

BUSBAR ADAPTERS /ADAPTER CLIPS

The adapters are required for combining different strip sizes, e.g. size 00 with sizes 1 to 3 .

TERMINAL COMPARTMENT /TERMINAL COVER

The terminal compartment and terminal covers provide probe - safe frontal protective covering of the terminal compartment.

BLANKING PLATE

The blanking plate is used for frontal covering of exposed strip locations. It is placed on the switchboard at the bottom and is fixed at the top using an espagnolette.

BUSBAR COVER, CLIP - TYPE

The clip - type protective covers of 100 mm width are suitable for bar thicknesses of $5 \mathrm{~mm}(6 \mathrm{~mm}), 10 \mathrm{~mm}$ and 15 mm and bar widths of 30 mm to 100 mm . Due to their elevated position, they can also cover studs up to a length of 35 mm .

BUSBAR COVER, SCREW -TYPE

The screw - type covers of 100 mm width are fixed at busbars with M12 thread or stud. The covers of 50 mm width are fixed on busbars or adapters with M8 thread.

RESERVE PANEL COVER

The reserve panel cover is used for frontal covering of exposed strip locations and is fixed at the strip sides using AH - SL and AH - SL/S cover holders.

COVER HOLDER / LATERAL COVER SUPPORT

The cover holders and lateral cover support are used for fixing and supporting lateral covers.

DESIGNATION PLATE MOUNT

The designation plate mount is plugged on the strips at the end face. It allows fitting of an additional designation plate. When fitted in switchboards, it can also be used as support for a systemcover.

POSITION INDICATOR

The 3-pole switchable strips of the sizes 00-3 and size 4A strips allow fitting of auxiliary switches with freely selectable make or break (changeover) function for indication of the connected or disconnected position.

CURRENT TRANSFORMER MOUNTING KIT

The current transformer mounting kit consists of the current transformer wiring aid with cable harness and a 9 - pin connector to be mounted on the back of the strip. It is available for SL - strips in the sizes $1-3$ and also in the size 00 for the 100 mm and 185 mm series.

HOLDER WITH SPACER ROLLER

On strips for installation of current transformers (version „, W"), the holder with spacer rollermust be fitted on the unmeasured phases if only single - phasemeasurement is used. The holderswith spacer rollers are already fitted on the strips for later installation of current transformers (version „WN").

ASSEMBLY AID

The assembly aid allows size 1 to 3 circuit strips to be hanged at the busbars while the system is energized.

BUSBAR SUPPORT

The 3 - pole busbar support is used for the fixing of flat bars at 100 mm and 185 mm distances. Lateral cover for busbar support The angled cover is screwed on to the busbar support and covers the ends of the busbars.

PIGGYBACK FUSE

The piggyback fuse enables fuse - rotected temporary connections (worksite electrical supply) to size 1 to 3 LV HRC strip - fuseways.

PEN TERMINAL FOR BUILDING SITE CONNECTION

When used with the piggyback fuse, the PEN clamp can be used to connect the neutral conductor directly to the PEN busbar.

RAILING KITS

The kit for 1000 A is used to expand the wiring space for 2 or 3 cable lugs per phase. The kit for 1250 A allows 2 strips to be connected at the terminal and 3 or 4 cables per phase to be connected.

CONNECTOR KITS

The connector kits are used for parallel switching of 2 strips.

Accessories

Direct-connection terminal	Std.P	Type
Size $4 \mathrm{a}, 3$ - wire connection, $95-150 \mathrm{~mm}^{2}, \mathrm{Al} / \mathrm{Cu}$	1	$\mathrm{~K} 3 \mathrm{G} / 3 / \mathrm{AF} 40-50$
Size $4 \mathrm{a}, 4$ - wire connection, $95-150 \mathrm{~mm}^{2}, \mathrm{Al} / \mathrm{Cu}$	1	$\mathrm{~K} G / 4 / \mathrm{AF} 40-50$
Size $4 \mathrm{a}, 2$ - wire connection, $120-300 \mathrm{~mm}^{2}, \mathrm{Al} / \mathrm{Cu}$	1	$\mathrm{KV} 2 \mathrm{HG}-\mathrm{F} / 2 / 300 / \mathrm{AF40-50}$

Direct-connection terminal	Std.P	Type
Sizes $1-3 / 70-240 \mathrm{~mm}^{2} \mathrm{AI} / \mathrm{Cu}$	3	K2G/A K2201092

V-terminal clamp	Std.P	Type
Size $00 / 10-70 \mathrm{~mm}^{2} \mathrm{Al} / \mathrm{Cu}$	3	P0070-Z

Clamp - type terminal	Std.P	Type
Size $00 / 1,5-70 \mathrm{~mm}^{2} \mathrm{Cu}$ (also for GU00)	3	S00 -Z

Kit for 2 cable lugs	Std.P	Type
For sizes $2-3$	3	FK2×240 - SL23

Busbar terminal for size 00	Std.P	Type
Bar thickness $5-10 \mathrm{~mm}$	3	SK - L/SL00
Bar thickness $10-15 \mathrm{~mm}$	3	SK - L/SL00/15

Busbar terminal for size 1-3	Std.P	Type
Bar thickness $5-10 \mathrm{~mm}$	3	SK - L/SL123/10

Adapter clip for size 00	Std.P	Type
For 1 strip, $185 / 185 \mathrm{~mm}$	1	$\mathrm{AB}-$ SL00/1
For 1 strip, $185 / 100 \mathrm{~mm}$	1	AB185 - SL00/100/1/52
For 1 strip, $60 / 100 \mathrm{~mm}$	1	AB60 - SL00/100/1

Adapter strip for size 00	Std.P	Type
For 2 strips, $185 / 185 \mathrm{~mm}$, height 42 mm	1	$\mathrm{AL}-$ SL00/42
For 2 strips, $185 / 100 \mathrm{~mm}$	1	AL185 - SL00/100/52

Adapterstrip for size 00 with busbar terminal	Std.P	Type
For 2 strips, $185 / 100 \mathrm{~mm}$	1	AL185/SK - SL00/100/52
For 2 strips, $185 / 185 \mathrm{~mm}$	1	AL/SK - SL00/42

Accessories

Terminal compartment cover	Std.P	Type
For SL00	1	HA - SL00
For SL123	1	HA - SL123/10
For SL3 $-3 \times 2(6)$	1	HA - SL3X2/10
For SL3/910(1000)	1	HA220 - SL123/10
For SL3/910(1000), extended	1	HA275 - SL123/10
For SLO0 $-3 \times 3 / 100$	1	HAV - SL00/100

Compensating adapters	Std.P	Type
For SLOO $-3 \times 3 / 100$	1	BO/BU - SL00/100

Blanking plate	Std.P	Type
For SL00 $-3 \times 3 / 100 /$ width 50 mm	1	B - SL00/100
For SL00, width 50 mm , Cover view 633 mm	1	B - SL00/633
For SL00, width 50 mm , Cover view 650 mm	1	B - SL00/650
For SL123, width 100 mm , Cover view 633 mm	1	B - SL123/633
For SL123, width 100 mm , Cover view 650 mm	10	B - SL123/650

Cover support	Std.P	Type
For SLO0 with cover view 650 mm	20	BA650 - SL00/185

Busbar cover, clip-type	Std.P	Type
185 mm busbar system / width 100 mm	3	H - RF

Busbar covers, screw-type	Std.P	Type
185 mm busbar system / width 50 mm, M8	3	$\mathrm{H}-$ SL00
100 mm busbar system / width 50 mm, M8	3	$\mathrm{H}-$ SL00/100
185 mm busbar system / width 100 mm, M12	2	$\mathrm{H}-$ SL123/662
185 mm busbar system / width 100 mm, M12/St	3	$\mathrm{H}-$ SL123/ST

Reserve panel cover	Std.P	Type
For SL00 / width 50 mm	1	LA - SL00
For SL123 / width 100 mm	1	LA - SL123

Cover holder	Std.P	Type
With fixing screw	4	$\mathrm{AH}-\mathrm{SL}$
With quick - release lock	4	$\mathrm{AH}-\mathrm{SL} / \mathrm{S}$

Lateral cover support	Std.P	Type
3 clips with T profile (length 650 mm)	2	AHCT-SL00-3

Designation plate, top	Std.P	Type
For SL00	5	BZO - SL00
For SL123	5	BZO - SL123/10

Position indicator	Std.P	Type
For SLO0 $-3 \times 3 / 100$	1	EV - SL00/100
For SL00, 3 - pole switchable	1	EV - SL00/3X3
For SL123, 3 - pole switchable	1	EV - SL123/3X3/10

Current transformer mounting kit for size 1-3	Std.P	Type
For 1 current transformer type WSD30 in phase L3	1	10W/L3- L/SL123
For 3 current transformers type WSD30	1	3OW - L/SL123

Transformer holder for strip size $\mathbf{0 0}-\mathbf{3}$	Std.P	Type
1/250 A - 3/630 A with spacer sleeve 45 mm , for WSD25	3	WH123+DH45/DI12,5
1/250 A - $3 / 630$ A with spacer sleeve 55 mm , for WSD30	3	WH123+DH55/DI12,5
00/160 A with spacer sleeve 45 mm , for WSD25	3	WH00+DH45/DI8,5
00/160 A with spacer sleeve 55 mm , for WSD30	3	WH00+DH55/DI8,5
3/1000 A with spacer sleeve 60 mm , for WSD40	3	WH3+DH60/DI12,5

Current-transformer upgrade kit for three transformers, complete with cable harness and plug-in terminal	Std.P	Type
with spacer sleeve 45mm, without transformer, for WSD25	1	WH123+DH45/DI12,5/KB
with spacer sleeve, without transformer, for WSD30	1	WH123+DH55/DI12,5/KB
SL00/100 with spacer sleeve 45 mm , for WSD25	1	WH00+DH45/DI8,5/KB/100
SL00/100 with spacer sleeve 55 mm , for WSD30	1	WH00+DH55/DI8,5/KB/100
SL00/185 with spacer sleeve 45 mm , for WSD25	1	WH00+DH45/DI8,5/KB/185
SL00/185 with spacer sleeve 55 mm , for WSD30	1	WH00+DH55/DI8,5/KB/185

Holder with spacer roller	Std.P	Type
Hight 20 mm , for SL00/100	1	HDR20 - SL00/100
Hight 26 mm , for sizes 1-3	1	HDR26 - SL123
Hight 26 mm , for size 3/1000	1	HDR26 - SL123

Fixing bracket	Std.P	Type
For sizes 1-3	10	MW - SL123

Busbar support	Std.P	Type
For 100 mm and 185 mm busbar distance, $\mathrm{M} 10,30 \mathrm{Nm}$	10	SH100/185

Lateral cover for busbar support	Std.P	Type
For 185 mm busbar distance	2	HW - SH/185
For 100 mm busbar distance	2	HW $-\mathrm{SH} / 100$

PEN terminal for building site connection	Std.P	Type
For $5-10 \mathrm{~mm}$ busbar thickness	1	SK-S0070

Fixing screws	Std.P	Type
For SL00	3	$\mathrm{~F}-\mathrm{M} 8 \times 40$
For SL123	3	$\mathrm{~F}-\mathrm{M} 12 \times 50$

Terminal strip	Std.P	Type
For SL00 - fuse strip with current transformer	1	BS - KL - SL00
For SL123 - fuse strip with current transformer	1	BS - KL - SL123

SE\%
 Dimensional drawings

SLOO - 3X/..., SLOO - 3X3/...

SL...- $3 x(3) . .$.

Dimensional drawings

SL...- 3x/.../GV

SL3-3X(3)/.../ARO

SL3-3X(3)/1000/HA

SL3-3X(3)/910/AO/AU-100

SL3-3X(3)/910/AO/AU-65

SL3-3X(3)/910/AO/AU-75

SL3-3x(3)/910/ARO/110

SL3-3X/910/HA

SLTL4A - 3AS/3x/4/(AO)

SLTL4A - 3AS/3X/2X3A/Q/147K/AO

SLOO-3X3/100/...

SL1 - 3x3/...

K3G/3/AF40-50

K2G/A

KV2HG-F/2/300/AF40-50

P0070-Z

SK - SLOO

	A
SK-SLOO/10	50
SK-SLOO/15	55

SOO-Z

HA - SLOO

HA - SL123/10

HA - SL3X2/10

HA220-SL123/10

B - SLOO/100

B - SL00/633

$\begin{array}{r}\text { Lbl } \\ -49 \\ \hline 4 . \\ \hline\end{array}$

BO/BU - SLOO/100

B - SLOO/650

H-SL123/ST

H-SLOO/100

H-SL123/662

SEI
 Dimensional drawings

AH - SL

HDR20-SL00/100

AH-SL/S

MW - SL1 23

SK - S0070

LV HRC strip type fuse-switch-disconnectors

Technical data for LV HRC strip type fuse-switch-disconnector (in accordance with IEC/EN 60 947-3 and VDE 0660 Part 107)

Type					SL00/100				SL00/185			
	Rated operational voltage		$U_{\text {e }}$	V	AC500	AC690	DC220	DC440	AC500	AC690	DC220	DC440
	Rated operational current		1.	A	160	100	160	100	160	100	160	100
	Conventional free air thermal current with fuses		$\mathrm{I}_{\text {th }}$	A	160	100	160	100	160	100	160	100
	Conventional free air thermal current with solid links		$\mathrm{I}_{\text {th }}$	A	210 As TM00				210 A s TM00			
	Rated frequency		-	Hz	40-60	40-60	-	-	40-60	40-60	-	-
	Rated insulation voltage		U_{i}	V	AC750							
	Rated conditional short-circuit current		-	kAeff	80	80	25	25	50	50	25	25
	Rated short-time withstandcurrent (1sec)		$\mathrm{I}_{\text {cw }}$	kAeff								
	Utilization category		-	-	AC22B	AC22B	DC21B	DC21B	AC22B	AC22B	DC21B	DC21B
	Rated making capacity		-	A	480	300	240	150	480	300	240	150
	Rated breaking capacity		-	A	480	300	240	150	480	300	240	150
	Rated impulse withstand voltage		$\mathrm{U}_{\mathrm{imp}}$	kV	8				8			
	Operating cycles with current		-	-	200	300	200	300	200	300	200	300
	Total power loss at lth (without fuse)		P_{v}	W	18	7	12	5	18	7	12	5
鲑	Size to DIN 43620		-	-	00				00			
	Max. rated current (gL/gG)		I_{N}	A	160	100	160	100	160	100	160	100
	Max. permis. power loss per fuse - link		P_{v}	W	12				12			
	Operating cycles without current		-	-	1700				1700			
	Weight ${ }^{11}$		-	g	1,1				2,4			
	Busbar distance		-	mm	100				185			
	Flat terminal	Bolt diameter		-	M8							
		Cable lug (DIN 46235)	-	mm^{2}	1x10-96 (max. 25 width)				1x10-96 max. 25 š			
		Flat bar	-	mm	20×10				20×10			
		Tightening torque	Ma	Nm	12-15				12-15			
	Terminal	Clamping cross-section	-	mm^{2}	S00 1,5-70 Cu/ribbon 6x9x0,8				S00 1,5-70 Cu/páska $6 \times 9 \times 0,8$			
		Tightening torque	Ma	Nm	2,6							
	Terminal	Clamping cross-section	-	mm^{2}	P $00-7010-70 \mathrm{Al} / \mathrm{Cu}$				P $00-7010-70 \mathrm{Al} / \mathrm{Cu}$			
		Tightening torque	Ma	Nm	2,6							
	Terminal	Clamping cross-section	-	mm^{2}	P $00-9535-95 \mathrm{Al} / \mathrm{Cu}$				P $00-9535-95 \mathrm{Al} / \mathrm{Cu}$			
		Tightening torque	Ma	Nm	2,6							
	Terminal	Clamping cross-section	-	mm^{2}	KU $0010-95 \mathrm{Al} / \mathrm{Cu}$				KU $0010-95 \mathrm{Al} / \mathrm{Cu}$			
		Tightening torque	Ma	Nm	10							
	Terminal	Clamping cross-section	-	mm^{2}	F70 1,5-70 Cu/ribbon 6x9x0,8				F70 -			
		Tightening torque	Ma	Nm	2,6				-			
	Terminal	Clamping cross-section	-	mm^{2}	KM 00 16-95 AI/Cu				KM 00 -			
		Tightening torque	Ma	Nm	10				-			
$\begin{aligned} & \text { "흘 } \\ & \text { 䯧 } \end{aligned}$	Front side device fitted	Operational state	-	-	IP 30							
		Front cover open	-	-	IP 10							
ㅡㅡㄴ늠응은응응	Ambient temperature ${ }^{2)}$		T_{u}	${ }^{\circ} \mathrm{C}$	-25 to +55							
	Rated operating mode		-	-	Continuous operation							
	Actuation		-	-	Dependent manual operation							
	Mounting position		-	-	Vertical, horizontal							
	Altitude		-	m	Up to 2000							
	Pollution degree		-	-	3							
	Overvoltage category		-	-	III							

[^2]
LV HRC strip type fuse-switch-disconnectors

Technical data for LV HRC strip type fuse-switch-disconnector (in accordance with IEC/EN 60 947-3 and VDE 0660 Part 107)

Type												
	Rated operational voltage		U.	V	AC500	AC690	DC220	DC440	AC500	AC690	DC220	DC440
	Rated operational current		1.	A	250	200	250	200	400	315	400	315
	Conventional free air thermal current with fuses		$\mathrm{I}_{\text {t }}$	A	250	200	250	200	400	315	400	315
	Conventional free air thermal current with solid links		I_{n}	A	400 As TM2				210 A sTM3			
	Rated frequency		-	Hz	40-60	40-60	-	-	40-60	40-60	-	-
	Rated insulation voltage		U_{i}	V	AC 1000							
	Rated conditional short-circuit current		-	kAeff	80	80	25	25	80	80	25	25
	Rated short-time withstandcurrent (1sec)		$\mathrm{I}_{\text {ck }}$	kAeff								
	Utilization category		-	-	AC22B	AC22B	DC21B	DC21B	AC22B	AC22B	DC21B	DC21B
	Rated making capacity		-	A	1200	600	375	300	1890	945	600	475
	Rated breaking capacity		-	A	1200	600	375	300	1890	945	600	475
	Rated impulse withstand voltage		$U_{\text {imp }}$	kV	12	12	8	8	12	12	8	8
	Operating cycles with current		-	-	200							
	Total power loss at $\mathrm{I}_{1 \text { (}}$ (without fuse)		P_{v}	W	23	15	16	11	49	30	33	21
兴	Size to DIN 43620		-	-	1				2			
	Max. rated current (gL/gG)		I_{N}	A	250	200	250	200	400	315	400	315
	Max. permis. power loss per fuse - link		P_{v}	W	32				45			
	Operating cycles without current		-	-	1400							
	Weight ${ }^{1}$		-	g	4,9							
	Busbar distance		-	mm	185							
든튼흥응	Flat terminal	Bolt diameter	-	-	M10/M12				M12			
		Cable lug (DIN 46 235)	-	mm ${ }^{2}$	1×25-150				1×25-240			
		Flat bar	-	mm	30×10							
		Tightening torque	Ma	Nm								
	Terminal	Clamping cross-section	-	mm^{2}	KM2 G 2,5-150/185-300							
		Tightening torque	Ma	Nm	40							
	Terminal	Clamping cross-section	-	mm^{2}	KM2G-F 25-240							
		Tightening torque	Ma	Nm	40							
	Front side device fitted	Operational state	-	-	IP 30							
		Front cover open	-	-	IP 10							
	Ambient temperature ${ }^{2}$)		T_{u}	${ }^{\circ} \mathrm{C}$	-25 to +55							
	Rated operating mode		-	-	Continuous operation							
	Actuation		-	-	Dependent manual operation							
	Mounting position		-	-	Vertical, horizontal							
	Altitude		-	m	Up to 2000							
	Pollution degree		-	-	3							
	Overvoltage category		-	-	III				IV			

[^3]Technical data for LV HRC strip type fuse-switch-disconnector (in accordance with IEC/EN 60 947-3 and VDE 0660 Part 107)

Type					SL. 3				SL3/910
	Rated operational voltage		$U_{\text {e }}$	V	AC500	AC690	DC220	DC440	AC 400
	Rated operational current		1.	A	630	500	630	500	910
	Conventional free air thermal current with fuses		$\mathrm{I}_{\text {th }}$	A	630	500	630	500	910
	Conventional free air thermal current with solid links		$\mathrm{I}_{\text {th }}$	A		800 As	/1250		1250
	Rated frequency		-	Hz	40-60	40-60	-	-	50
	Rated insulation voltage		U_{i}	V					AC500
	Rated conditional short-circuit current		-	kAeff	80	80	25		50
	Rated short-time withstandcurrent (1sec)		I_{cw}	kAeff					-
	Utilization category		-	-	AC22B	AC22B	DC21B	DC21B	AC22B
	Rated making capacity		-	A	2400	1500	945	750	3750
	Rated breaking capacity		-	A	2400	1500	945	750	3750
	Rated impulse withstand voltage		$\mathrm{U}_{\mathrm{imp}}$	kV	12	12	8	8	8
	Operating cycles with current		-	-	200	200	200	200	100
	Total power loss at I_{th} (without fuse)		P_{v}	W	110	70	74	47	260
$\stackrel{\cong}{\tilde{y}} \underset{\underline{E}}{\underline{E}}$	Size to DIN 43620		-	-	3				3/910 A
	Max. rated current (gL/gG)		I_{N}	A	630	500	630	500	910
	Max. permis. power loss per fuse - link		P_{v}	W	48				61
	Operating cycles without current		-	-	1000				100
	Weight ${ }^{1)}$		-	g	5,6				11,4
	Busbar distance		-	mm	185				185
	Flat terminal	Bolt diameter	-	-	M12				$2 \times \mathrm{M} 12$
		Cable lug (DIN 46 235)	-	mm^{2}		1 $\times 25-300$ (43 wi		max. $2 \times 300,3 \times 185$
		Flat bar	-	mm					80×10
		Tightening torque	Ma	Nm					35-40
	Terminal	Clamping cross-section	-	mm^{2}		KM2G 25-	/185-300		KM2G
		Tightening torque	Ma	Nm	40				
	Terminal	Clamping cross-section	-	mm^{2}		KM2G-F	-240		KM2G-F
		Tightening torque	Ma	Nm	40				
$\begin{aligned} & \text { "⿹ㅡㄹ 믈 } \\ & \text { 䯧 } \end{aligned}$	Front side device fitted	Operational state	-	-	IP 30				
		Front cover open	-	-	IP 10				
	Ambient temperature ${ }^{2)}$		T	${ }^{\circ} \mathrm{C}$	-25 to +55				
	Rated operating mode		-	-	Continuous operation				
	Actuation		-	-	Dependent manual operation				
	Mounting position		-	-	Vertical, horizontal				
	Altitude		-	m	Up to 2000				
	Pollution degree		-	-	3				
	Overvoltage category		-	-	IV				

[^4]
Technical data for LV HRC strip type fuse-switch-disconnector (in accordance with IEC/EN 60 947-3 and VDE 0660 Part 107)

Type					SL00/400	SL3	000
	Rated operational voltage		U_{e}	V	AC500	AC500	AC 400
	Rated operational current		1	A	400	1000	1000
	Conventional free air thermal current with fuses		$\mathrm{I}_{\text {th }}$	A			
	Conventional free air thermal current with solid links		$\mathrm{I}_{\text {th }}$	A	400	1000	1000
	Rated frequency		-	Hz	40-60	40-60	40-60
	Rated insulation voltage		U_{i}	V	AC750	AC 1000	AC 1000
	Rated conditional short-circuit current		-	kAeff	-		
	Rated short-time withstandcurrent (1sec)		$\mathrm{I}_{\text {cw }}$	kAeff	17	251)	251)
	Utilization category		-	-	AC-21B	AC-21B	AC-22B
	Rated making capacity		-	A	-	2400	3000
	Rated breaking capacity		-	A	-	2400	3000
	Rated impulse withstand voltage		$\mathrm{U}_{\text {imp }}$	kV	8	12	12
	Operating cycles with current		-	-	200	100	100
	Total power loss at $\mathrm{I}_{\text {th }}$ (without fuse)		P_{v}	W	49	300	300
	Size to DIN 43620		-	-	TM00-26		
	Max. rated current (gL/gG)		I_{N}	A	400		
	Max. permis. power loss per fuse - link		-	-	800		
	Operating cycles without current		-	kg	3,5		
	Weight ${ }^{1)}$		-	mm	185		
읎ㅡㅡㄴ응응	Flat terminal	Bolt diameter	-	-			
		Cable lug (DIN 46235)	-	mm^{2}		max. $2 \times$	0,3x120
		Flat bar	-	mm			
		Tightening torque	Ma	Nm			
	Terminal	Clamping cross-section	-	mm^{2}	KRO 1x25-150		
		Tightening torque	Ma	Nm	20		
$\begin{aligned} & \text { "흘 믈 } \\ & \text { ol } \end{aligned}$	Front side device fitted	Operational state	-	-	IP 30		
		Front cover open	-	-	IP 10		
	Ambient temperature ${ }^{2)}$		T_{1}	${ }^{\circ} \mathrm{C}$	-25 to +55		
	Rated operating mode		-	-	Continuous operation		
	Actuation		-	-	Dependent manual operation		
	Mounting position		-	-	Vertical, horizontal		
	Altitude		-	m	Up to 2000		
	Pollution degree		-	-	3		
	Overvoltage category		-	-	III	IV	

${ }^{1)}$ With interlock, without packaging
${ }^{\text {2) }} 35^{\circ} \mathrm{C}$ Normal temperature, at $55^{\circ} \mathrm{C}$ with reduced operating current

Technical data for LV HRC strip type fuse-switch-disconnector (in accordance with IEC/EN 60 947-3 and VDE 0660 Part 107)

Type					SL3/1250	SL3/2000
	Rated operational voltage		$U_{\text {e }}$	V	400	400
	Rated operational current		$\mathrm{I}^{\text {e }}$	A	1250	2000
	Conventional free air thermal current with fuses		$\mathrm{I}_{\text {th }}$	A		
	Conventional free air thermal current with solid links		$\mathrm{I}_{\text {th }}$	A	1250	2000
	Rated frequency		-	Hz		
	Rated insulation voltage		U_{i}	V		
	Rated conditional short-circuit current		-	kAeff		
	Rated short-time withstandcurrent (1sec)		$\mathrm{I}_{\text {cw }}$	kAeff		
	Utilization category		-	-		
	Rated making capacity		-	A		
	Rated breaking capacity		-	A		
	Rated impulse withstand voltage		$U_{\text {imp }}$	kV		
	Operating cycles with current		-	-		
	Total power loss at $\mathrm{l}_{\text {th }}$ (without fuse)		P_{v}	W	400	520
兴	Size to DIN 43620		-	-	2×3	2xTM3/1250
	Max. rated current (gL/gG)		I_{N}	A		
	Max. permis. power loss per fuse - link		P_{v}	W		
	Operating cycles without current		-	-		
	Weight ${ }^{11}$		-	kg	15,5	33
	Flat terminal	Bolt diameter	-	-	$3 \times M 12$	$4 x \mathrm{M} 12$
		Cable lug (DIN 46 235)	-	mm^{2}	max. $3 \times 300,4 \times 185$	max. 4×300
		Flat bar	-	mm		
		Tightening torque	Ma	Nm		
	Front side device fitted	Operational state	-	-		
		Front cover open	-	-		
	Ambient temperature ${ }^{2)}$		T_{u}	${ }^{\circ} \mathrm{C}$		
	Rated operating mode		-	-		
	Actuation		-	-	Depen	tion
	Mounting position		-	-		
	Altitude		-	m		
	Pollution degree		-	-		
	Overvoltage category		-	-		

${ }^{1)}$ Without packaging
${ }^{2)} 35^{\circ} \mathrm{C}$ Normal temperature, at $55^{\circ} \mathrm{C}$ with reduced operating current

Certification

The Record Plus ${ }^{\text {TM }}$ line of circuit breakers has been designed to comply with the following standards:

EN 60947 Low-voltage switchgear and controlgear

EN 60947-1: General rules
EN 60947-2: Circuit-breakers
EN 60947-3: Switches, disconnectors, switchdisconnectors and fuse-combination units
EN 60947-4-1: Contactors and motor-starters
Section One: Electromechanical contactors and motorstarters
EN 60947-5-1: Control circuit devices and switching elements
Section One: Electromechanical control circuit devices The compliance has been verified by two testing authorities: LOVAG and KEMA (appropriate certificates are available on request)

Meeting the international standards. The requirements are met of BS, VDE, UTE, KEMA, CEI. Record Plus breakers have been tested in acordance with the NEMA standards

> For the Record Plus product certificates are available from the following regulatory bodies: Germanische Lloyds $\quad-\quad$ RINA Lloyds Register of Shipping - CCC (China) Further tests are being undertaken to meet the requirements of the following regulatory bodies: Bureau Veritas - Det Norske Veritas

Please contact us to check the availability of individual certificates.

EN 60947-4 standard

Use in motor circuits

Rated current Ith	A at $65^{\circ} \mathrm{C}$
Endurance (CO operations)	Mechanical
	Electrical at In class AC23
Protection	Operations per hour
	Short-circuit only (sep. overload device)
	Overload class 10 and short-circuit
	Max $\ln (A)$ class 10 Max In (A) class 30 Earth fault unit (differential) Circuit Breaker / Switch type

NEMA AB1 standard

3 ph . interruption ratings [kA]	240 V AC	- -	50	65	100	-	100	150	200
	480 V AC	- -	25	36	50	-	50	65	130
	600 V AC	- -	6	8	10		25	36	42
Installation									
Mounting	On symmetrical DIN Rail	yes	yes	yes			no		
	Fixed	yes	yes	yes			yes		
	Plug in	no	yes	yes			yes		
	Draw out	no	no	no			yes		
Connection	Front	yes	yes	yes			yes		
	Rear	no	no	yes			yes		
Dimensions [$\mathrm{w} \times \mathrm{h} \times \mathrm{d}$] mm	3 pole, fixed front connection	$\begin{array}{\|l\|} \hline 27 \times 130 \times 85 \\ \text { for single pole } \\ \hline \end{array}$	$81 \times 130 \times 85$	$81 \times 130 \times 85$			$105 \times 170 \times 95$		
	4 pole, fixed front connection		$108 \times 130 \times 85$	$108 \times 130 \times 85$			$140 \times 170 \times 95$		
Weights [kg]	3 pole, fixed front connection	0.4	0.91.3	0.91.3					
	4 pole, fixed front connection	for single pole					1.52.0		

How to order a standard breaker

To determine the basic breaker, the required current rating, the short circuit breaking capacity and the number of switched and protected poles must be defined. This information can be found on page 2 and 3 of this catalogue and is repeated in short-form within the ordering code part of each breaker size.

After selecting the basic device the circuit protection element or trip unit needs to be defined. These are available in numerous types, each of which is described briefly in the ordering code part of each breaker size, whilst a full functional description can be found in the relative section B of this catalogue.

With the above mentioned information the correct code for the required moulded case circuit breaker can be found in the order code pages. Here the selected product is a version suited for fixed mounting and front access connection.

Internal accessories

Common internal acessories are available from the FD63/160 frame size till the FG400/630 frame size. Taking into account
the maximum breaker content the ordering procedure just requires a correct code selection.
The FK800, 1250 and 1600 types have equivalent accesories.

Operators

The breakers are normally supplied with an elongated toggle operator. Other operators, as rotary handles and electrical operators, can be ordered seperately.

Residual Current devices (RCD)

Available as add-on devices for side mounting (FD63/160) or mounting below the trip unit area of the breaker (FD63/160, FE 160/250 and FG400/630). For breakers large than 630A seperate RCD relays and sensors are available.
On the FK800, FK1250 and FK1600 an integrated ground fault device can be used.

Breakers in Plug-in or Draw-out version

A breaker in fixed rating can easily be converted to a breaker in plug-in or draw-out rating. The plug-in device is supplied in two parts, one set for mounting on the breaker and one multipole base. The draw-out unit is ordered as one complete conversion kit for the required breaker. On ordering plug-in or draw-out breakers with accessories, please take into account that the auxiliary wiring also needs to be executed as such $(6,8$ or 10 pole socket system required).

Connection options

If the standard connection options do not meet the requirements a wide variety of others is available.
The connection options are supplied in kit form for mounting on one side (load or line) of a breaker and can be used for the fixed, plug-in or draw-out version of the breaker.

Installation accessories

Additional requirements, as to the protection degree of the connection area, the locking or padlocking of the breaker and finishing of cut-outs for operators can be met by the use of these parts.

[^0]: ${ }^{1)}$ Without packaging
 ${ }^{\text {2 }}$) $35^{\circ} \mathrm{C}$ normal temperature, at $55^{\circ} \mathrm{C}$ with reduced operating current

[^1]: 1) Without packaging
 2) $35^{\circ} \mathrm{C}$ normal temperature, at $55^{\circ} \mathrm{C}$ with reduced operating current
 ${ }^{3)}$ Data for 3-pole version
[^2]: ${ }^{1)}$ Without packaging
 ${ }^{\text {2) }} 35^{\circ} \mathrm{C}$ Normal temperature, at $55^{\circ} \mathrm{C}$ with reduced operating current

[^3]: ${ }^{1)}$ Without packaging
 ${ }^{\text {2) }} 35^{\circ} \mathrm{C}$ Normal temperature, at $55^{\circ} \mathrm{C}$ with reduced operating current

[^4]: ${ }^{1)}$ Without packaging
 ${ }^{2)} 35^{\circ} \mathrm{C}$ Normal temperature, at $55^{\circ} \mathrm{C}$ with reduced operating current

